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~ Theoretical Basis for Microwave and RF
Field Effects on Excitable Cellular Membranes

CHARLES A. CAIN, MEMBER, IEEE

Abstracr-A model of a mdarrfsm for nontherroaf interaction of RF or

mlcsowave fields with excitable celhfar membranes is presented. It may be
poasilie for an oscillating component of membrane potential to chsnge the

ctmductsnce of the membrane to all ion speeies wfdeb transverse vokage-

efepemkmt membrane ‘-Is. Some specffic effects on squid gbmt axon

predkte dbythernode laredkrswd.

INTRODUCTION

E

XC1TA13LE CELLS are often extremely sensitive to

very small changes in the electrostatic field across

the cellular membrane. A number of researchers have

published somewhat contradictory evidence which sup-

ports [1]–[6] and does not support [7]–[10] the hypothesis

that RF and microwave field8 can affect excitable cells by

nonthermal mechanisms. It is the purpose of this paper to

provide a theoretical basis for an understanding of how

oscillating electromagnetic fields at RF and microwave

frequencies might directly affect nerve, muscle, and other

electrically excitable tissue,

In what follows, the classical mathematical model for-

mulated by Hodgkin and Huxley [11] for the current-volt-

age relations in the membrane of the giant axon L.oligo

will provide a framework for further discussion, In the

Hodgkin and Huxley (FH-1) model, certain parameters are

nonlinear functions of the instantaneous electric field

across the membrane. These nonlinear func%ions of the

electric field provide the basis for a number of possible

microwave effects on nerve function,

THE N41MBRMTE MODEL

h 1952 Hodgkin and Huxley [11] published a set of

equations based cm extensive experimental data which

expressed the total squid axon membrane current as func-

tions of instantaneous transmembrane potential and time.

This highly predictive empirical formulation was a major

achievement of quantitative biology, In the HH model,

the total membrane current 1, written as a function of V is

expressed by the following system of coupled equations:

1= CM%+-gKn4( v– VK)

+gNa)n%(v– vNa)+g,(v- ~1) (1)
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where

dn/dt = a~(l –n)–~nn (2)

dm/dt =a.(1 – m)– B.m (3)

dh/dt=afi(l-h)-&h (4)

and

( v+ 10
an= O.Ol(V+ 10)/ exp~ – 1

)
(5)

j3. = 0.125 exp( V/80) (6)

Clm =0.l(V+25)/(exp* – 1) (7)

&=4 exp( V/18) (8)

ah= 0.07 exp( V/20) (9)

(10)

In these equations V is the displacement of membrane

potential from the resting value (depolarization negative).

Constants CM, ~K, ~~a, ~1, VK, VN., and VI are explained

in detail in [11], The value of all constants used in the

computations which follow as-egiven in Tabls 1,

In (1) ~Kn4 and &am3h are the potassium and sodium

conductance, respectively. The dmensionl~ss dynamical

quantities m, n, and h are solutions of the first-order

differential equations (2)-(4), respectively, and vary be-

tween zero and unity after a change in membrane potem-

tial, The a’s and /3’s in these equations depend cndy on

the instantaneous value of membrane potential and are

given in (5)-(10).

The proper units for use of the preceding equations are

as follows: potentials are expressed in rnV, current in

pA/cm2, conductance in mS/cm2, capacitance in

pF/cm2, and t in rns. The expressions for the a’s and ~’s

hold only at a temperature of 6.3°C.

‘T3i13 ~ASIS FOR &fKXOWAW3 AND RF ~IELD ~FFEGT5

The a and fi rate constants were assumed by Hodgkin

and Huxley to be functions of the instantaneous electric
field across the membrane [1 1], We will continue to make

this assumption as an alternating field is applied. The

total field across the membrane can be expressed as

v(t) = V.+ Vm Cos (&w (11)
where VO is the dc displacement of the membrane poten-

tial from its resting state and V~ is the peak amplitude of
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TABLE L
VALUS OFCONSTANTSUSED WHSN COMPUTINGA SOLUTION TO

THE HH J?WJAT30NS(rAx33N FROM[1 11)

CONSTANT VALUE

1.0

-115

+ 12

- 10.6

120

36

0.3

UNITS

pF/cm2

m“

m“

m“

msl CQL2

mSf cim2

msjcll?

the oscillating component of applied membrane potential.

The instantaneous values of the a’s and ~’s are then

obtained by replacing V in (5)-(10) by V(t) as given by

(11).

For example, when V in (8) is replacedby(11), then ~~

becomes a periodic nonnegative function which can be

expressed in a Fourier series as

+W

where

The average value of ~~(~t) is

/3no=&~2%n(@)dwt (14)

The quantity /3~,0 is a nonnegative monotonically increas-

ing function of V~. Therefore, an oscillating electric field

across the membrane can result in a steady (de) change in

all a and /3 rate constants.

SOME RESULTS

The instantaneous values of @w(tot) and am(ut) when

VO= O over a full period and V.= 25 mV are shown in

Fig. 1 along with the average values BM,O and a~,r The

monotonic increase in the average value of all six a and ~

rate constants as a function of increasing V’ when V.= O

is illustrated in Fig. 2. In this figure, all rate constant

average values have been normalized so that the constants

have unity value when V~ = O.

Fig. 3 is a plot of both am and ~m as a function of the

dc membrane potential V@ Note that the average value of

both am and ~~ increases with an increase in VW.

The a and ~ rate constants determine both the rate of

change in m, n, and h and the final steady-state value of

these quantities. The steady-state value reached after a

step input is

403
_ %

~q + Pq

where q is m, n, or h.

The time constant for q(t) after a step input is

1=— .
‘9 ~q + Pq

(15)

(16)
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Fig. 1. Instantaneous values of rate constants /3~(@ and w(@ when
VO= O and V-II= 25 mV where the membrane potential is V= Vo+
Vm cos d (-––); the average values j3w,o and ~,. when Vm =25 mV
and vo -O (—-—-); and the rate Constanb when VO= v. = O (—).
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Fig. 2. The normalized average value of alf rate constants as a function
of increasing Vm when V.= O. AU average values have been normal-
ized so that the rate constants have unity value when V. =0, e.g.,~&
is the ratio of ~n,o when Vm # O to the value of /3m,owhen Vm = 0.
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Fig. 3. Average values of rate constants ~ and /3~ as a function of V.
for V-=0 and Vm =25 mV.
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Fig. 4. Steady-state values of mm, n~, and hm as a function of V. for
Vm=O and V~=25 mV. mw, n~, Rnd % comput~ from (27) using
the numerically computed average values of the a and /3 rate constants
as given by (14).

A plot of m@, n@, and h~ as a function of VOwith V~ as a

parameter is given in Fig. 4.

Let us define the applied potential across the membrane

to be

v(t)= Vmcos @t[u(t)– U(f– to)] (17)

where u(t) is the unit step function. Such an applied

potential can result if the membrane is irradiated with a

microwave or RF pulse beginning at t = O and ending at

time to. The change in membrane potential in response to

this applied ac field can be obtained by numerically

solving ( 1)–( 10) with the initial conditions being the rest-

ing state values for V, m, n, and k Since no current flows

through the membrane from external sources, 1 in (1) is

set to zero, and the axon is assumed to be irradiated

uniformly along the length such that dV/dX = O. After

each iteration through the EIH equations, accurate esti-

mates for the average values of the a(tit)’s and ~(@’s are

obtained numerically using the appropriate expression

analogous to (14). The response of the membrane poten-

tial to the pulse of applied oscillating field is shown for

one value of Vm in Fig. 5.

The changes in membrane potential shown in Fig. 5

result from changes in both the sodium and potassium

conductance. The time course of both these conduc-

tance following the pulse of applied ac field (as given in
(17)) is also shown in Fig. 5. The conductance were

computed after obtaining numerical solutions to the HH

equations for m(t), n(t), and h(t) with (17) as the input.
Conductance gK and g~, are then

gK(~) = ~Kn4(~) (18)

gl%(t) = ~N@3(t)h(t). (19)
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Fig. 5. Response of model axon to a puked oscillating component of
membrane electric field (10-ms pulse, Vfi = 25 rev). The membrane
potential and the sodium and potassium conductartces are shown.
These curves are solutions of the HH equations (see text).

FIELD WITHIN THE MEMBRANE

In estimating the level of the oscillating component of

electric field developed within the membrane, the model

discussed by Barnes and Hu [12] was used. Without
repeating their formulation, a membrane near the surface

in high water content tissue exposed to a 10 mW/cm2

(194 V/m in air) plane wave would result in an electric

field of 980 V/m within the nonpolar region of the lipid

bilayer (assuming a dielectric constant of 2.1 [13]). This is

equivalent to an applied ac membrane potential Vn of

9.8 pV if membrane thickness is 100 ~.
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The effects of such a field as predicted by the above

model are not significant. However, if a pulsed field with a

peak intensity of 10 W/cm2 (194 kV/m in air) is applied,

the resulting field across the membrane will be 9.8 mV.

This level of applied ac field would cause significant

functional changes in the model we have considered. It

should be noted that thermal effects of applied fields of

this magnitude will be considerable for all but the lowest

duty cycle pulsed waveform, e.g., a duty cycle of 0.001

will result in a field thermally equivalent, on the average,

to an incident intensity of 10 mW/cm2. Whether or not

such a pulsed waveform would result in significant effect

as predicted by the model awaits further analysis.

Because of the large size of the giant squid axon it is

possible, using an internal wire electrode, to apply an RF

field directly across the membrane (e.g., see Takashima

and Schwan [14].) The highly specific predictions of the

model presented here may be useful in the design of

experiments and the interpretation of results. For exam-

ple, the effects of directly applied high-frequency fields on

membrane conductance as well as static or dc membrane

potential should be easily measured. Such experiments

may help determine the dielectric relaxation times of the

gating dipoles (or charged groups) which compromise the

“voltage sensor” for membrane ionic channels (see Dis-

cussion). From this kind of information, one might de-

termine the upper limit of frequency for application of the

theory presented here.

DISCUSSION

Hodgkin and Huxley pointed out that the steep mem-

brane potential dependence of sodium and potassium

perrneabilities in squid axon implies the presence in the

membrane of polar molecules having large charges or

dipole moments [1 1]. Only through existence of such

charged groups acting as “voltage sensors” can the cell be

so exquisitely sensitive to small changes in electrostatic

potential. Movement of these charged groups (associated

with the integral proteins of the voltage sensitive ionic

channels) could result in protein confirmational changes

which open (or close) the “gate” in the ion specific chan-

nel. Measuring movement of this charge, recorded as a

displacement current, has been the subject of a consider-

able volume of recent research (see Almers [13] or Hille

[15] for excellent reviews).

For a given value of membrane potential, there is an

energy barrier separating the fully open and fully closed

states of these gating dipoles. From thermodynamic prin-

ciples [16], it can be shown that the probability of a dipole

being in a given state is a highly nonlinear function of the

applied potential (a Boltzmann distribution results if cer-

tain simplifying assumptions are made [11], [13], [17]).
Thus an oscillating field will produce a dc change in the

average position of the dipole resulting in a steady shift in

the probability of the dipole being in a given state. It is

this kind of physical mechanism which could lead to the

conductance changes predicted by the modified HH

model presented here.
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Fig. 6. Computed membrane action potentials in response to an initial
membrane depolarization of 7 mV for different values of Vm. Curves

are solutions to the HH equations,

It is by no means clear that observed effects of micro-

wave or RF radiation on excitable tissue can always be

attributed to a thermal mechanism. In turtle hearts, irradi-

ation with 960 MHz at levels below those which produce

general heating can cause bradycardia, while higher mi-

crowave intensities and general heating cause tachycardia

[2]. In single pacemaker-type neurons of Aplysia, a num-

ber of observed changes in firing patterns in response to

microwave radiation were in the opposite direction to that

caused by general heating [3]. Extremely low-frequency

electric fields at 6 to 75 Hz, or RF radiation amplitude

modulated at these frequencies have been shown to have

significant effects on efflux of calcium ions from brain

tissue at levels which are thermally insignificant [4]–[6].

The model given in this paper may give a theoretical

basis for some of these observed effects. For example, it

has been shown that oscillating fields within the mem-

brane of squid axon might effectively open voltage sensi-

tive potassium channels resulting in increased potassium

conductance. Furthermore, an oscillating field closes

sodium channels in the steady state due to an increase in

sodium inactivation. This increase in gK and steady-state

decrease in g~, results in a hyperpolarization of the mem-

brane (Fig. 5) because the potassium equilibrium potential

VK is on the hyperpolarized side of the resting potential.

Such a membrane hyperpolarization would have a general

inhibitory effect on an irradiated neuron or muscle cell.

Thus spontaneously firing cells, e.g., pacemaker cells in

neural or cardiac tissue, would be expected to decrease

their impulse generating frequency in response to irradia-

tion of sufficient magnitude. This effect is in the opposite

direction to generalized heating.

Such an inhibitory effect would decrease the probability

of an action potential being generated for a given fixed

level of excitory input. This is shown quite graphically in

Fig. 6 where the solution to the HH equations is given for

a fixed initial membrane depolarization (stimulus) of V=

– 7 mV. The resulting membrane action potential in the

absence of an oscillating field across the membrane ( V~ =

O) is given in trace A, Trace B shows the response to the
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same stimulus but with V~ = 5.0 mV. The peak of the

action potential has been delayed by about 1 ms. An

oscillating electric field equal to or greater than 6 mV

completely quenches the action potential response (traces

C am.3 D). The impulses shown in Fig. 6 are membrane

action potentials [11]. The effects of an oscillating electric

field on propagated action potentials will be discussed in a

subsequent paper.

The transitory increase in g~, in response to a pulsed

RF or microwave field seen in Fig. 5 is an interesting

phenomenon predicted by the model which warrants fur-

ther discussion. When the membrane is initially at rest

(V= O), one can see from Fig. 4 that an applied ac field of

25 mV results in a substantial decrease in h and only a

slight increase in m. Since gNa = m3hFN~, the final steady-

state value of g~. will decrease in response to the applied

ac field. However, Th> Tmso that m(t) reaches its steady-

state value before h(t) changes substantially. T’hus gNa

rapidly increases initially but decreases as h(t) begins to

change. In the squid axon, this initial increase in gN~ iS

insufficient to have a significant excitory effect on the

membrane. However, in other excitable membranes, a

rapid initial increase in gN. of greater magnitude might

result in a membrane depolarization sufficient to trigger

an action potential. In such a cell, a step of applied ac

field might have a phasic excitory effect but a tonic

inhibitory effect.

A wide range of other phenomena in response to ap-

plied oscillating fields are predicted by the modified HH

model of the squid axon and by similar models for other

excitable cells. A number of these phenomena and models

will be discussed in detail in a subsequent paper.

Since the HH model was published, the equations have

been modified to fit a number of situations in the squid

axon other than the experimental results which they origi-

nally modeled. Modified equations can be used to de-

scribe the effects of temperature on the propagated action

potential [18], the repetitive firing observed in low-calcium

concentrations [18], the +rolonged action potentials pro-

duced by tetraethylammonium ions [19], [20], and the
hyperpolarizing response observed in high potassium solu-

tions [20]. In addition, modified HH-type equations have

been applied with some degree of success to model other

excitable tissues including myelinated nerve [21 ]–[23] and

cardiac muscle [24], [25], Modifications of these various

mathematical models to account for applied microwave or

RF fields might be useful in explaining the RF and

microwave field effects on nerve and muscle tissue ob-

served in the laboratory.

SUMMARY

This paper shows that it maybe possible for an oscillat-

ing component of membrane potential to change the

conductance of the membrane to all ion species which

traverse voltage-dependent membrane channels. Voltage-

sensitive channels for sodium, potassium, calcium, and

chloride ions have been demonstrated in a wide range of

excitable membranes. Such channels exist in membrane of

muscle cells (skeletal, smooth, and cardiac), in nerve cell

axon and soma membrane, and even in the membrane of

the extensive dendritic branches of some nerve cell types.

Modified HH models of the type discussed herein maybe

useful in predicting the effects of CW, pulsed or ampli-

tude modulated RF and microwave radiation on neural

and neural-muscular systems, For example, in the squid

giant axon, the model predicts that an oscillating compo-

nent of membrane potential would increase the membrane

potassium conductance and decrease the sodium conduc-

tance in the steady state. This would have an inhibitory

effect on the axon which is in the direction from effects

produced by heating.
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Short Papers

Easy Determination of the Characteristic Impedance

of the Coaxial System Consisting of an Inner Regnhtr

Polygon Concentric with an Outer Ciicle

KOICHI TSURUTA m RYUITI TERAKADO

Ahtraet-Tlsfa paper gives a sfmple method for the determfrdon of

the clwacteristic impedance of an fnner ragufar polygon cmtcentrfc with
m--,mqp--moffof~itimfwfw
plsmesheets ofcfsaqge *were radiafly dfapmed inthepolygon. ’Ihe
ressdtaareissgoesf ~t with those Obt$lhWf by Laura smd hsfaonf
[2], [3],

Riblet [1] and Laura and Luisoni [2], [3] have developed
interesting techniques for the determination of the charactersitic
impedance of the coaxiaf system consisting of a regular polygon

conwntric with a circle, This paper gives a simpler method for
an inner regular polygon of s apexes concentric with an outer
circle,

An infinitely long conducting plane sheet of width 2b charged
with charge density Q per unit length in the z direction is
situated in free space with permittivity co, as shown in Fig. L
Suppose that the reference point for potential is at the conduct-
ing sheet whose potential is defined as A. The potential V’p at a
point P(X, y) on the z plane can be obtained by eonformal
mapping of the z plane on a w plane, whose mapping function is

(1)

By this mapping, equipotential lines on the w plane becomes
concentric circies. Therefore, the potential Vp is easily written as
follows:

f

‘1

I----J
~ --- sheet charge

;,
1;1

2;

1;1
1;

1[,

O c:b C c+b X

Fig. 1. Dimensions of the plane sheet of cherge.

The electric field produced by the conducting sheet

derivable as the negative gradient of the potential.

charge is

In the proposed method an important supposition is made,
that is, the distribution of charge on the conducting sheet invari.
ably remain, even if other conducting sheets are set near it.

Fig. 2 shows the disposition of the sheets of charge fors = 5,
for example. They were radially disposed between the center and
the apexes of the polygon. The potential and the field at my
point can be calculated analytically by superposition for these
sheets of charge. The potentials at the sides of the polygon and
at the outer circle were calculated fors = 3, 4, 5, and 6, Table I
shows the maximum deviations of the potentials at the sides of
the polygon and at the outer circle from the average potentials

~wrso~ and v~l,, respectively, expressed m percentages of the
average potentials. VPOIYgmwas calculated from the potentials at
100 points which were arranged on the half-side P, Pz (Fig. 2] at
equal distances and were weighted by the field strength. Vticle

—

Q invp-A– — ~i (
‘;’ l)z+(~)’ +~(~+l)’+(y)z

2TC0

2

+~(%r+(%r-’+~ {(wr+(%r+l)’-d(yy

2 (2)
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was calculated in the same manner as VWIYSOnfrom the poten-

The authors are with the Department of Electrical Engineering, Ibaraki tials on the arc Cl C> R is the radius of the circle and r is the
University, Hitachi Ibaraki, 316 Japan. radius of the circumscribed circle of the polygon.
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