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A Theoretical Basis for Microwave and RF
Field Effects on Excitable Cellular Membranes

CHARLES A. CAIN, MEMBER, IEEE

Abstract— A model of a mechanism for nonthermal interaction of RF or
microwave fields with excitable celluiar membranes is presented. It may be
possibie for an oscillating component of membrane potential to change the
conductance of the membrane to all ion species which transverse voltage-
dependent membrane channels. Some specific effects on squid giant axon
predicted by the model are discussed.

INTRODUCTION

XCITABLE CELLS are often extremely sensitive to

very small changes in the electrostatic field across
the cellular membrane. A number of researchers have
published somewhat contradictory evidence which sup-
ports [1]-[6] and does not support [7}-[10] the hypothesis
that RF and microwave fields can affect excitable cells by
nonthermal mechanisms. It is the purpose of this paper to
provide a theoretical basis for an understanding of how
oscillating electromagnetic fields at RF and microwave
frequencies might directly affect nerve, muscle, and other
electrically excitable tissue.

In what follows, the classical mathematical model for-
mulated by Hodgkin and Huxley [11] for the current-volt-
age relations in the membrane of the giant axon Loligo
will provide a framework for further discussion. In the
Hodgkin and Huxley (HH) model, certain parameters are
nonlinear functions of the instantaneous electric field
across the membrane. These nonlinear functions of the
electric field provide the basis for a number of possible
microwave effects on nerve function.

THE MEMBRANE MODEL

In 1952 Hodgkin and Huxley [11] published a set of
equations based on extensive experimental data which
expressed the total squid axon membrane current as func-
tions of instantanieous transmembrane potential and time.
This highly predictive empirical formulation was a major
achievement of quantitative biology. In the HH model,
the total membrane current I, written as a function of V is
expressed by the following system of coupled equations:

av  _
+ Enamh(V — Vnad+&8(V=V) (1)
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where
dn/di=a,(1—n)—B,n 2)
dm/dt=a,(1—m)—B,m 3)
dh/dt=a,(1—h)~ B,k @)
and
o, =0.01(V+ 10)/(exp Vfom - 1) (5)
B,=0.125 exp(¥/80) )
am=0.1(V+25)/(exp V16-025 - 1) (7)
Bn=4exp(V/18) (8)
a;, =0.07 exp(V/20) 9
Bu=1/(exp 55 +1). (10)

In these equations ¥ is the displacement of membrane
potential from the resting value (depolarization negative).
Constants Cyy, 8k, &nas £15 Vo Ve and ¥, are explained
in detail in [11]. The value of all constants used in the
computations which follow are given in Table I.

In (1) §xn* and Fy,m°h are the potassium and sodium
conductances, respectively. The dimensionless dynamical
quantities m, n, and A are solutions of the first-order
differential equations (2)-(4), respectively, and vary be-
tween zero and unity after a change in membrane poten-
tial. The a’s and B’s in these equations depend only on
the instantaneous value of membrane potential and are
given in (5)=(10).

The proper units for use of the preceding equations are
as follows: potentials are expressed in mV, current in
pA/em?  conductance in mS/cm? capacitance in
pF/em?, and ¢ in ms. The expressions for the a’s and f’s
hold only at a temperature of 6.3°C.

THEe Basis FOR MicrowAavE aAND RF FreLo BrFFECTS

The « and 8 rate constants were assumed by Hodgkin
and Huxley to be functions of the instantaneous electric
field across the membrane [11]. We will continue to make
this assumption as an alternating field is applied. The
total field across the membrane can be expressed as

V()= Vy+ ¥V, cos wt (11)

where V, is the dc displacement of the membrane poten-
tial from its resting state and V,, is the peak amplitude of
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TABLE I
VALUE OF CONSTANTS UseD WHEN COMPUTING A SOLUTION TO
THE HH EQUATIONS (TAKEN FROM [11])

CONSTANT VALUE UNITS
CM 1.0 uF/c:m2
VN& -115 mV
VK + 12 nv
V1 - 10.6 mnv
ENa 120 mS/cmz
EI( 36 mS/r:m2
gy 0.3 mS/(:m2

|

the oscillating component of applied membrane potential.
The instantaneous values of the a’s and B’s are then
obtained by replacing V in (5)—-(10) by V{(¥) as given by
(1D).

For example, when ¥ in (8) is replaced by (11), then S,
becomes a periodic nonnegative function which can be
expressed in a Fourier series as

+00
Bu(wt)= 3 B, iexp(jkot)

(12)
k=—
where
1 2= )
B = P fo B,.(wr) exp(—jkwt)dwt. (13)
The average value of B, (w?) is
1 27
Bro= 57 [ Balw)dor. (14)

The quantity B, , is a nonnegative monotonically increas-
ing function of V,,. Therefore, an oscillating electric field
across the membrane can result in a steady (dc) change in
all a and B rate constants.

SoME RESULTS

The instantaneous values of B,(w?) and «,(w?) when
Vo=0 over a full period and V,,=25 mV are shown in
Fig. 1 along with the average values B, , and a,, (. The
monotonic increase in the average value of all six « and 8
rate constants as a function of increasing V,, when V=0
is illustrated in Fig. 2. In this figure, all rate constant
average values have been normalized so that the constants
have unity value when ¥, =0.

Fig. 3 is a plot of both a,, and B, as a function of the
dc membrane potential V,,. Note that the average value of
both a,, and B, increases with an increase in V.

The a and B rate constants determine both the rate of
change in m, n, and % and the final steady-state value of
these quantities. The steady-state value reached after a
step input is

%
=TI (1%)
where q is m, n, or A.
The time constant for g(¢) after a step input is

1
T, o |
a aq-i-ﬁq
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Fig. 1. Instantaneous values of rate constants 8,(«wf) and a,,(wf) when
Vo=0 and V,,=25 mV where the membrane potential is V'=V,+
¥, cos wt (——-); the average values 8, and a,, o when ¥, =25 mV
and ¥y=0 (—~); and the rate constants when Vo=V, =0 (—).
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Fig. 2. The normalized average value of all rate constants as a function
of increasing V,, when Vy=0. All average values have been normal-
ized so that the rate constants have unity value when V,, =0, e.g., Rg
is the ratio of 8,  when V70 to the value of 8, o when ¥,,=0.
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( 16) Fig. 3. Average values of rate constants a,, and 8, as a function of V¥

for ¥,,=0and ¥,,=25 mV.
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Fig. 4. Steady-state values of m_, n, and A, as a function of V,, for
V,,=0 and ¥,,=25 mV. m_, n,, and h, computed from (27) using
the numerically computed average values of the « and B rate constants

as given by (14).

Aplotof m, n, and h_, as a function of V, with V,,, as a
parameter is given in Fig. 4.

Let us define the applied potential across the membrane
to be

V(t)=V,,cos wt[ u(t)—u(t—1,)] (17)

where u(f) is the unit step function. Such an applied
potential can result if the membrane is irradiated with a
microwave or RF pulse beginning at =0 and ending at
time ¢,. The change in membrane potential in response to
this applied ac field can be obtained by numerically
solving (1)-(10) with the initial conditions being the rest-
ing state values for ¥, m, n, and A. Since no current flows
through the membrane from external sources, I in (1) is
set to zero, and the axon is assumed to be irradiated
uniformly along the length such that dV/dx=0. After
each iteration through the HH equations, accurate esti-
mates for the average values of the a(wf)’s and B(wt)’s are
obtained numerically using the appropriate expression
analogous to (14). The response of the membrane poten-
tial to the pulse of applied oscillating field is shown for
one value of V,, in Fig. 5.

The changes in membrane potential shown in Fig. 5
result from changes in both the sodium and potassium
conductances. The time course of both these conduc-
tances following the pulse of applied ac field (as given in
(17)) is also shown in Fig. 5. The conductances were
computed after obtaining numerical solutions to the HH
equations for m(¢), n(¢), and h(¢) with (17) as the input.
Conductances gg and gy, are then
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Fig. 5. Response of model axon to a pulsed oscillating component of
membrane electric field (10-ms pulse, V,,=25 mV). The membrane
potential and the sodium and potassium conductances are shown.
These curves are solutions of the HH equations (see text).
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FierLp WITHIN THE MEMBRANE

In estimating the level of the oscillating component of
electric field developed within the membrane, the model
discussed by Barnes and Hu [12] was used. Without
repeating their formulation, a membrane near the surface
in high water content tissue exposed to a 10 mW /cm?
(194 V/m in air) plane wave would result in an electric
field of 980V /m within the nonpolar region of the lipid

gx (1) =gxn(t) (18) Dbilayer (assuming a dielectric constant of 2.1 [13]). This is
equivalent to an applied ac membrane potential ¥, of
gna(t) = Ena> (D) A(2). (19) 9.8 uV if membrane thickness is 100 A.
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The effects of such a field as predicted by the above
model are nor significant. However, if a pulsed field with a
peak intensity of 10 W/cm? (194 kV /m in air) is applied,
the resulting field across the membrane will be 9.8 mV.
This level of applied ac field would cause significant
functional changes in the model we have considered. It
should be noted that thermal effects of applied fields of
this magnitude will be considerable for all but the lowest
duty cycle pulsed waveform, e.g., a duty cycle of 0.001
will result in a field thermally equivalent, on the average,
to an incident intensity of 10 mW /cm? Whether or not
such a pulsed waveform would result in significant effect
as predicted by the model awaits further analysis.

Because of the large size of the giant squid axon it is
possible, using an internal wire electrode, to apply an RF
field directly across the membrane (e.g., see Takashima
and Schwan [14].) The highly specific predictions of the
model presented here may be useful in the design of
experiments and the interpretation of results. For exam-
ple, the effects of directly applied high-frequency fields on
membrane conductance as well as static or dc membrane
potential should be easily measured. Such experiments
may help determine the dielectric relaxation times of the
gating dipoles (or charged groups) which compromise the
“voltage sensor” for membrane ionic channels (see Dis-
cussion). From this kind of information, one might de-
termine the upper limit of frequency for application of the
theory presented here.

DISCUSSION

Hodgkin and Huxley pointed out that the steep mem-
brane potential dependence of sodium and potassium
permeabilities in squid axon implies the presence in the
membrane of polar molecules having large charges or
dipole moments [11]. Only through existence of such
charged groups acting as “voltage sensors” can the cell be
so exquisitely sensitive to small changes in electrostatic
potential. Movement of these charged groups (associated
with the integral proteins of the voltage sensitive ionic
channels) could result in protein conformational changes
which open (or close) the “gate” in the ion specific chan-
nel. Measuring movement of this charge, recorded as a
displacement current, has been the subject of a consider-
able volume of recent research (see Almers [13] or Hille
[15] for excellent reviews).

For a given value of membrane potential, there is an
energy barrier separating the fully open and fully closed
states of these gating dipoles. From thermodynamic prin-
ciples [16], it can be shown that the probability of a dipole
being in a given state is a highly nonlinear function of the
applied potential (a Boltzmann distribution results if cer-
tain simplifying assumptions are made [11], [13], [17]).
Thus an oscillating field will produce a dc change in the
average position of the dipole resulting in a steady shift in
the probability of the dipole being in a given state. It is
this kind of physical mechanism which could lead to the
conductance changes predicted by the modified HH
model presented here.
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Fig. 6. Computed membrane action potentials in response to an initial
membrane depolarization of 7 mV for different values of ¥,,. Curves
are solutions to the HH equations.

It is by no means clear that observed effects of micro-
wave or RF radiation on excitable tissue can always be
attributed to a thermal mechanism. In turtle hearts, irradi-
ation with 960 MHz at levels below those which produce
general heating can cause bradycardia, while higher mi-
crowave intensities and general heating cause tachycardia
[2]. In single pacemaker-type neurons of Aplysia, a num-
ber of observed changes in firing patterns in response to
microwave radiation were in the opposite direction to that
caused by general heating [3]. Extremely low-frequency
electric fields at 6 to 75 Hz, or RF radiation amplitude
modulated at these frequencies have been shown to have
significant effects on efflux of calcium ions from brain
tissue at levels which are thermally insignificant [4]-[6].

The model given in this paper may give a theoretical
basis for some of these observed effects. For example, it
has been shown that oscillating fields within the mem-
brane of squid axon might effectively open voltage sensi-
tive potassium channels resulting in increased potassium
conductance. Furthermore, an oscillating field closes
sodium channels in the steady state due to an increase in
sodium inactivation. This increase in gx and steady-state
decrease in gy, results in a hyperpolarization of the mem-
brane (Fig. 5) because the potassium equilibrium potential
Vi is on the hyperpolarized side of the resting potential.
Such a membrane hyperpolarization would have a general
inhibitory effect on an irradiated neuron or muscle cell.
Thus spontaneously firing cells, e.g., pacemaker cells in
neural or cardiac tissue, would be expected to decrease
their impulse generating frequency in response to irradia-
tion of sufficient magnitude. This effect is in the opposite
direction to generalized heating.

Such an inhibitory effect would decrease the probability
of an action potential being generated for a given fixed
level of excitory input. This is shown quite graphically in
Fig. 6 where the solution to the HH equations is given for
a fixed initial membrane depolarization (stimulus) of V=
—7 mV. The resulting membrane action potential in the
absence of an oscillating field across the membrane (V,,=
0) is given in trace A. Trace B shows the response to the



146 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-28, NO. 2, FEBRUARY 1980

same stimulus but with ¥,,=5.0 mV. The peak of the
action potential has been delayed by about 1 ms. An
oscillating electric field equal to or greater than 6 mV
completely quenches the action potential response (traces
C and D). The impulses shown in Fig. 6 are membrane
action potentials [11]. The effects of an oscillating electric
field on propagated action potentials will be discussed in a
subsequent paper.

The transitory increase in gy, in response to a pulsed
RF or microwave field seen in Fig. 5 is an interesting
phenomenon predicted by the model which warrants fur-
ther discussion. When the membrane is initially at rest
(V =0), one can see from Fig. 4 that an applied ac field of
25 mV results in a substantial decrease in 4 and only a
slight increase in m. Since gy, = m*hgy,, the final steady-
state value of gy, will decrease in response to the applied
ac field. However, 7, >,, so that m(?) reaches its steady-
state value before h(f) changes substantially. Thus gy,
rapidly increases initially but decreases as A(f) begins to
change. In the squid axon, this initial increase in gy, is
insufficient to have a significant excitory effect on the
membrane. However, in other excitable membranes, a
rapid initial increase in gy, of greater magnitude might
result in a membrane depolarization sufficient to trigger
an action potential. In such a cell, a step of applied ac
field might have a phasic excitory effect but a tonic
inhibitory effect.

A wide range of other phenomena in response to ap-
plied oscillating fields are predicted by the modified HH
model of the squid axon and by similar models for other
excitable cells. A number of these phenomena and models
will be discussed in detail in a subsequent paper.

Since the HH model was published, the equations have
been modified to fit a number of situations in the squid
axon other than the experimental results which they origi-
nally modeled. Modified equations can be used to de-
scribe the effects of temperature on the propagated action
potential [18], the repetitive firing observed in low-calcium
concentrations [18], the prolonged action potentials pro-
duced by tetraethylammonium ions [19], [20], and the
hyperpolarizing response observed in high potassium solu-
tions [20]. In addition, modified HH-type equations have
been applied with some degree of success to model other
excitable tissues including myelinated nerve [21]-[23] and
cardiac muscle [24], [25]. Modifications of these various
mathematical models to account for applied microwave or
RF fields might be useful in explaining the RF and
microwave field effects on nerve and muscle tissue ob-
served in the laboratory.

SUMMARY

This paper shows that it may be possible for an oscillat-
ing component of membrane potential to change the
conductance of the membrane to all ion species which
traverse voltage-dependent membrane channels. Voltage-
sensitive channels for sodium, potassium, calcium, and
chloride ions have been demonstrated in a wide range of
excitable membranes. Such channels exist in membrane of

muscle cells (skeletal, smooth, and cardiac), in nerve cell
axon and soma membrane, and even in the membrane of
the extensive dendritic branches of some nerve cell types.
Modified HH models of the type discussed herein may be
useful in predicting the effects of CW, pulsed or ampli-
tude modulated RF and microwave radiation on neural
and neural-muscular systems. For example, in the squid
giant axon, the model predicts that an oscillating compo-
nent of membrane potential would increase the membrane
potassium conductance and decrease the sodium conduc-
tance in the steady state. This would have an inhibitory
effect on the axon which is in the direction from effects
produced by heating.
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Short Papers

Easy Determination of the Characteristic Impedance
of the Coaxial System Consisting of an Inner Regular
Polygon Concentric with an Outer Circle

KOICHI TSURUTA axp RYUITI TERAKADO

Abstract—This paper gives a simple method for the determination of
the characteristic impedance of an inner regular polygon concentric with
an outer circle. The approach makes use of the method of superposition for
plane sheets of charge which were radially disposed in the polygon. The
results are in good agreement with those obtained by Laura and Luisoni
(2}, [3].

Riblet [1] and Laura and Luisoni [2), [3] have developed
interesting techniques for the determination of the charactersitic
impedance of the coaxial system consisting of a regular polygon
concentric with a circle. This paper gives a simpler method for
an inner regular polygon of s apexes concentric with an outer
circle.

An infinitely long conducting plane sheet of width 25 charged
with charge density Q per unit length in the z direction is
situated in free space with permittivity €, as shown in Fig. 1.
Suppose that the reference point for potential is at the conduct-
ing sheet whose potential is defined as 4. The potential Vp at a
point P(x, y) on the z plane can be obtained by conformal
mapping of the z plane on a w plane, whose mapping function is

Z--g-(w+%v—)+(c+ia). )

By this mapping, equipotential lines on the w plane becomes
concentric circles. Therefore, the potential ¥ is easily written as
follows: ‘

aboommsheet charge

i
!
|
i
|
|
i
|
I}
1

Ol e

o] c-b ceb x

Fig. 1. Dimensions of the plane sheet of charge.

The electric field produced by the conducting sheet charge is
derivable as the negative gradient of the potential,

In the proposed method an important supposition is made,
that is, the distribution of charge on the conducting sheet invari-
ably remain, even if other conducting sheets are set near it.

Fig. 2 shows the disposition of the sheets of charge for s=5,
for example, They were radially disposed between the center and
the apexes of the polygon. The potential and the field at any
point can be calculated analytically by superposition for these
sheets of charge. The potentials at the sides of the polygon and
at the outer circle were calculated for =3, 4, 5, and 6, Table I
shows the maximum deviations of the potentials at the sides of
the polygon and at the outer circle from the average potentials
Vpotygon 80d Vi, TeSpectively, expressed as percentages of the
average potentials. ¥;q1.0, Was calculated from the potentials at
100 points which were arranged on the half-side P; P, (Fig. 2) at
equal distances and were weighted by the field strength, V..,

-4-2
Vp A 2"€0 In

V=Y (5

P eV(E5E )+ (252)

7) (252 ) ()
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was calculated in the same manner as Vpoiyg0n from the poten-

tials on the arc C; C,. R is the radius of the circle and r is the
radius of the circumscribed circle of the polygon.

0018-9480,/80,/0200-0147$00.75 ©1980 IEEE



